Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Evaluation of Tensile Modulus of Carbon Nanotube Bundle Based Composite with Interface Using Finite Element Method

M. S. Islam, F. O. Riktan, S. C. Chowdhury, M. M. R. Chowdhury, and S. Ahmed
Bangladesh University of Engineering & Technology (BUET)
Dhaka, Bangladesh

Carbon Nanotubes (CNTs) have remarkable mechanical, thermal and electrical properties. The properties of CNTs depend on atomic arrangement (how the sheets of graphite are rolled), the diameter and length of the tubes and morphology of nanostructure. In this paper effective elastic properties of CNT based polymer composites are evaluated using a square Representative Volume Element (RVE) in ...

A Wide Range MEMS Vacuum Gauge Based on Knudsen’s Forces

V. Sista, and E. Bhattarchaya
Microelectronics and MEMS Lab
Department of Electrical Engineering
Indian Institute of technology Madras
Chennai, India

A MEMS based Knudsen’s pressure gauge working in the range of 1e-5 mbar to 10 mbar is designed and simulated in COMSOL. The working principle is based on Knudsen’s forces that arise when two plates are held at different temperatures and their separation is comparable to the mean free path of the ambient gas molecules. The forces change the separation between the plates and capacitance between ...

Planar Geometry Ferrofluid Flows in Spatially Uniform Sinusoidally Time-Varying Magnetic Fields

S. Khushrushahi, A. Weddemann, Y. Kim, and M. Zahn
Massachusetts Institute of Technology
Cambridge, MA

Prior work has analyzed the case of planar Poiseuille ferrofluid flows in planar ducts stressed by uniform sinusoidally applied fields transverse and perpendicular to the duct axis. The coupled linear and angular momentum conservation equations with imposed magnetic flux density, Bx and magnetic field Hz result in a fourth-order system that was numerically solved using the shooting method in ...

Study of Gas Dynamics in the Heat-accumulation Stoves

P. Scotton, and D. Rossi
Dipartimento di geoscienze
Università di Padova
Padova, Italy

The paper aims to clarify some aspects of the gases hydro-dynamics within the twisted conduct of heat accumulation stoves (ceramic-refractory stoves) downstream the combustion chamber. Both Comsol laminar and k-e turbulent models have been used in case of straight and curved pipes with circular, square and rectangular cross-sections, at different Reynolds numbers, in case of smooth wall (Comsol ...

3D Model for the Dynamic Simulation of SOFC Cathodes

A. Häffelin, J. Joos, M. Ender, A. Weber, and E. Ivers-Tiffée
Institut für Werkstoffe der Elektrotechnik (IWE)
Karlsruher Institut für Technologie (KIT)
Karlsruhe, Germany

A fuel cell is an electrochemical system, which converts chemical energy into electricity by a controlled reaction of hydrogen and oxygen. The performance of the electrode is likewise determined by its material and the microstructure. The simulations were performed directly on reconstructions of real electrodes, obtained from focused ion beam (FIB) tomography. A finite element method (FEM) ...

Analysis & Design Optimization of Laterally Driven PolySilicon Electro-thermal Microgripper for Micro-objects Manipulation

T. Pahwa[1], S. Gupta[1], V. Bansal[1], R. Narwal[1], B. Prasad[1], D. Kumar[1]
[1]Electronic Science Department, Kurukshetra University, Kurukshetra, India

Micro-grippers find applications in micro-robotics, microsurgery, micro-fluidics, micro-relays, assembling and miniature medical instrumentation. Actuation principle involved may be electrothermal, electrostatic, piezoelectric, shape memory and electromagnetic. It has been found that thermal actuation provides greater displacement at low voltages when compared to other mechanisms. A 3-D ...

Glass Plates Noise Transmission Suppression by Means of Distributed Piezoelectric Composite Actuators Shunted by an Active Circuit

K. Novakova[1][2], P. Mokry[2]
[1]Research Centre for Special Optics and Optoelectronic Systems (TOPTEC), Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Turnov, Czech Republic
[2]Institute of Mechatronics and Computer Engineering, Technical University of Liberec, Liberec, Czech Republic

Glass windows represent a virtual sound source for buildings interior. It is very easy to make them vibrate by action of incident acoustic pressure wave. Therefore, non-negligible part of the wave is transmitted through the window. We propose and simulate a method based on the change of mechanical properties of the plate using flexible piezoelectric Macro Fiber Composite actuators distributed on ...

Capacitive Accelerometer Characteristics Study

B. S. Kavitha[1], S. B. Rudraswamy[1], C. R. Venugopal[1]
[1]SJCE, Mysore, Karnataka, India

This paper will describe the dependence of capacitive accelerometer characteristics on the accelerometers physical dimension and its material properties. The sense element of the accelerometer is designed on the basis of a commercially available torsion based accelerometer technology. The sense element consists of an asymmetrically shaped flat plate of metal supported above a substrate surface ...

Design and Simulation of MEMS Based Piezoelectric Vibration Energy Harvesting System

M. C. B. Kumar[1], D. B. Prabhu[1], R. Akila[1], A. Gupta[1], M. Alagappan[1]
[1]PSG College of Technology, Coimbatore, Tamil nadu, India

This paper discusses the simulation studies on a vibration based energy harvesting system to convert the undesirable mechanical vibration to useful green power. The design consists of a resonating proof mass and a spring system enclosed in housing and fixed on the source of vibration. A piezoelectric suspension acts as the transducer and generates a voltage that is used to charge the batteries ...

Design of Tunable Metamaterial Operating Near 90 GHz

K. Tarnowski[1], W. Salejda[1]
[1]Institute of Physics, Wroclaw University of Technology, Wroclaw, Poland

Currently there is much interest in electromagnetic metamaterials [1-9]. In our work we have focused on design of tunable metamaterial which can be made within available technology. In proposed design we use metallic split-ring resonators and thin-wires (Figure 1). Moreover we have decided to introduce nematic liquid crystal layer in design to obtain tunability (Figure 2). One can control ...