Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Using Computational Fluid-Dynamics (CFD) for the Evaluation of Tomato Puree Pasteurization: Effect of Orientation of Bottle - new

A. R. Lespinard[1, 2], R. H. Mascheroni[1, 2]
[1]Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), La Plata, Buenos Aires, Argentina
[2]Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina

Determination of the temperature in liquid foods may be derived by measurements or by modeling. However, the placement of thermocouple probes to record temperature in the container disturbs the flow patterns. For this purpose, Computational fluid-dynamics (CFD) offers a powerful tool for predictions of the transient temperature and velocity profiles during natural convection heating of liquid ...

CFD Analysis of a Macroscale Ultrasonic Separator

K. Chitale [1], B. Lipkens [1, 2], W. Presz, Jr. [1],
[1] FloDesign Sonics Inc., Wilbraham, MA, USA
[2] Western New England University, Springfield, MA, USA

Macroscale ultrasonic separation is a new filtration technology, with various applications such as cell clarification, cell therapy, blood-lipid separation, oil-water separation etc. These systems use piezoelectric transducers to create standing waves in fluid-particle mixture. Suspended particles get clustered by action of acoustic radiation forces and are separated out by enhanced gravity ...


张岩 [1],
[1] 清华大学精密仪器系,北京,中国

引言: 对于微流控分选芯片而言,分支出口的位置、宽度等几何参数会直接影响到粒子分选精度与回收效率。但是,遗憾的是,对于流道各分支出口位置的高效设计方法却鲜有报道。当前的设计方法主要是对每一种目标粒子直接进行轨迹仿真[1~7]。但这种方法的运算成本巨大,如果粒子分散体系涉及到的粒径种类繁多且流道结构复杂,那么对每种粒径都进行仿真分析将会使得计算量与计算精度之间的矛盾愈加尖锐;而且,每引入一种没有被仿真研究过的粒径,都要对其重新进行仿真运算,运算成本巨大[8~10]。 据此,本文提出了一种结合有限元分析仿真与系统辨识方法的粒子出射位置预测方法:利用少量的几组仿真实验结果即可以对多分散粒子体系进行出射位置的定量预测,大大减小运算量,提高芯片几何设计的效率。具体方案如下: COMSOL Multiphysics® 软件的使用: 首先,进行仿真实验,获得原始拟合数据。仿真分为两部分 ...

Meshing Challenges in Simulating the Induced Currents in Vacuum Phototriode

S. Zahid [1], P. R. Hobson [1],
[1] Brunel University London, London, United Kingdom

Vacuum phototriodes (VPT) have been used as photodetectors for many years in particle physics experiments. For example, they were used in the OPAL experiment at LEP and are currently used in the endcap Electromagnetic Calorimeter of the CMS experiment, at CERN’s Large Hadron Collider. Existing VPTs are fast, low-gain devices that are able to operate in strong magnetic fields at angles up to ...

Electromagnetic Analysis of Cloaking Metamaterial Structures

E. Furlani, and A. Baev
The Institute for Lasers, Photonics and Biophotonics, University at Buffalo, Buffalo, NY, USA

We study cylindrical and spherical shell structures that have cloaking material properties proposed by Pendry et al. We use 2D and 3D time-harmonic analysis to study the field distribution and power flow for various arrangements of these structures. We have shown that the COMSOL RF solver is well suited for the analysis of cloaking metamaterial structures If cloaking material properties can be ...

Helium Two-Phase Flow in a Thermosiphon Open Loop

B. Baudouy[1] and F. Visentin[1]
[1]CEA, Irfu, SACM, Gif-sur-Yvette, France

The construction of high magnetic field superconducting coils requires the use of low temperature superconductors that must be cooled down to liquid helium temperature (4.2 K). Natural two-phase convection loops, i.e. thermosiphon loop, are used as cooling system for large superconducting magnets mainly because of its passive nature. The study present a thermohydraulics model realized with ...

Towards a Finite Element Calculation of Acoustical Amplitudes in HID Lamps

B. Baumann[1], M. Wolff[1], J. Hirsch[2], P. Antonis[2], S. Bhosle[3], and R. Valdivia Barrientos[4]
[1]Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Eindhoven, The Netherlands
[3]LAPLACE, Université de Toulouse and CNRS, Toulouse, France
[4]National Institute of Nuclear Research, Salazar, Ocoyoacac, Mexico

High intensity discharge lamps can experience flickering and even destruction, when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp’s are tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.

Understanding “Mutual Inductance” using COMSOL Multiphysics®

H.A. Ghali[1] and H.A. Rahman[1]
[1]Electrical Engineering Department British University in Egypt “BUE”, El Sherouk City, Egypt

A teaching platform that could be used to help students understand concepts such as; flux linking and mutual inductance has been developed using the AC/DC Module of COMSOL Multiphysics®. This is achieved through the accurate determination of different magnetic flux density components within the proposed geometry. Furthermore, based on the structure configuration, students can use obtained ...

Negative Ion Beams and Secondary Beams

M. Cavenago[1], P. Veltri[2], E. Gazza[2], G. Serianni[2], and P. Agostinetti[2]
[1]INFN-LNL, Legnaro, Padova, Italy
[2]Consorzio RFX, Padova, Italy

The development of powerful negative ion sources requires precise and versatile simulation tools to predict the emittance of the extracted ion beams and the heat load on the electrodes. A first tool is a determination of the plasma beam interface which is accomplished by a set of macro based in the COMSOL Multiphysics environment. Notwithstanding the strong nonlinearities involved, a proper ...

Analysis of Multiconductor Quasi-TEM Transmission Lines and Multimode Waveguides

S.M. Musa[1], M.N.O. Sadiku[1], and O.D. Momoh[2]
[1]Prairie View A&M University, Prairie View, TX, USA
[2]Indiana University-Purdue University, Fort Wayne, IN, USA

This paper presents an analysis approach of multicondcutor quasi-TEM lines transmission interconnect in a single dielectric region and multimode waveguides using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in strongly inhomogeneous media. We illustrate that FEM is suitable and effective as other methods for modeling of ...