The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Thermal Controller, Reduced Order Model

Large FEM simulations can be costly and, if repeated simulations are needed, it can be beneficial to use reduced-order models (ROMs). ROMs are typically valid only in the vicinity of their design conditions and have lower accuracy, but the simulation time is significantly shorter. The objective for model reduction is to provide a sufficiently accurate representation of the input-output dynamics ...

Stiffness Analysis of a Communication Mast's Diagonal Mounting

Communication masts usually have a framework with a bolted triangular lattice design. The diagonals of the framework are assembled from several parts and welded together. When operating under a given wind load at a specific location, the antenna’s total rotation angle should stay below a certain limit to ensure uninterrupted communications. For the type of mast in this model, the engineers ...

Modeling the Behavior of a Thermostat

This example exemplifies how to model applications using the *Events* Interface where a thermostat is sumlated. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "[Implementing a Thermostat with the Events Interface](https://www.comsol.com/blogs/implementing-a-thermostat-with-the-events-interface/)".

How to Generate Randomized Inhomogeneous Material Data

These examples demonstrate how to generate and visualize randomized material data with specified statistical properties determined by a spectral density distribution by using the tools available under the _Results_ node. In the blog post associated with these files, "[How to Generate Randomized Inhomogeneous Material Data](/blogs/how-to-generate-randomized-inhomogeneous-material-data/)", we ...

Lid-Driven Cavity

This example demonstrates how to define the lid-driven cavity benchmark in the field of computational fluid dynamics. In the model setup, a 2D square cavity has a tangentially moving wall that induces a large vortex in the center of the cavity, and small vortices in the corners. The results show the velocity field for different values of the Reynolds number. The velocity profile and size and ...

Isospectral Drums

Striking a drum excites a spectrum of vibration modes that together make up the instrument’s characteristic sound or acoustic signal. These vibration modes correspond to the eigenmodes, or eigenfunctions, of the drum’s membrane. Thus you can study this problem by solving eigenvalue problems for stretched membranes. Two different geometric shapes are modeled, with all other parameters being ...

Swept Mesh of a Bracket Geometry

This tutorial demonstrates how to partition a 3D part to create a swept mesh. The example explores different strategies for partitioning the geometry, and demonstrates how to combine hexahedral and tetrahedral meshes.

Beam Subjected to Traveling Load

As an example of how to build an app using the Application Builder, this application simulates the transient response of a beam, or bridge, that is placed on several equidistant supports and is subjected to a traveling load. The purpose of the Beam Subjected to Traveling Load app is to analyze the structural response of a bridge when vehicles pass over it. Many of the bridge's parameters can be ...

Modeling Phase Change with Hysteresis

This example exemplifies how to model thermal phase change that is subject to hysteresis. A more detailed description of the phenomenon, and the modeling process, can be seen in the blog post "[Thermal Modeling of Phase-Change Materials with Hysteresis](https://www.comsol.com/blogs/thermal-modeling-of-phase-change-materials-with-hysteresis/)".

Cluster Setup Validation

Use the Cluster Setup Validation app to validate if the current default cluster settings, as taken from the preferences, correctly submit jobs to the cluster. This app also allows you to override the default cluster settings to, for example, test modifications to the current setup or test a new set of settings for connecting to a cluster.